Temporal variation in maximum cell-specific nitrification rate

0
- By: , ,

Courtesy of IWA Publishing

The cell numbers of ammonia-oxidising bacteria (AOBs), Nitrospira and Nitrobacter in activated sludge used to treat wastewater from a thermal power plant in Japan were examined for nine months using a real-time PCR quantification technique. AOB cell numbers ranged 2.8 × 1010–2.3 × 1011 cell/L. The amoA clone analysis showed that the only Nitrosomonas halophila was responsible for ammonia oxidation over the period. Nitrospira were in the range of 2.6 × 109–2.4 × 1010 cell/L and Nitrobacter were less than 1% as common as Nitrospira. Meanwhile, maximum nitrification rates, maximum ammonia- and nitrite-oxidation rates obtained from aerobic batch tests, ranged 0.5–1.3 mmol-N/L h and 1.0–2.5 mmol-N/L h, respectively. No clear correlations were observed between the cell numbers of AOBs or Nitrospira and their maximum rates, because the maximum cell-specific ammonia- and nitrite-oxidation rates varied remarkably over the ranges of 1.1–11.9 and 2.4–21.6 fmol-N/cell h, respectively. To explore the factors controlling maximum cell-specific nitrification rates, the relationship to influent nitrogen loads per AOB or Nitrospira cell numbers was investigated. Fairly good correlations were obtained. Considering the effluent ammonia and nitrite concentrations were zero and only Nitrosomonas halophila had a role in ammonia oxidation over the period, we conclude that the amount of nitrogen oxidised per AOB or Nitrospira cell numbers likely controls maximum cell-specific ammonia- or nitrite-oxidation rates, respectively.

Keywords: ammonia-oxidising bacteria, maximum cell-specific nitrification rate, Nitrosomonas halophila, Nitrospira, real-time PCR

Customer comments

No comments were found for Temporal variation in maximum cell-specific nitrification rate. Be the first to comment!