The role of conceptual hydrologic model calibration in climate change impact on water resources assessment

0

Courtesy of IWA Publishing

Assessment of climate change (CC) impact on hydrologic regime requires a calibrated rainfall-runoff model, defined by its structure and parameters. The parameter values depend, inter alia, on the calibration period. This paper investigates influence of the calibration period on parameter values, model efficiency and streamflow projections under CC. To this end, a conceptual HBV-light model of the Kolubara River catchment in Serbia is calibrated against flows observed within 5 consecutive wettest, driest, warmest and coldest years and in the complete record period. The optimised parameters reveal high sensitivity towards calibration period. Hydrologic projections under climate change are developed by employing (1) five hydrologic models with outputs of one GCM–RCM chain (Global and Regional Climate Models) and (2) one hydrologic model with five GCM–RCM outputs. Sign and magnitude of change in projected variables, compared to the corresponding values simulated over the baseline period, vary with the hydrologic model used. This variability is comparable in magnitude to variability stemming from climate models. Models calibrated over periods with similar precipitation as the projected ones may result in less uncertain projections, while warmer climate is not expected to contribute to the uncertainty in flow projections. Simulations over prolonged dry periods are expected to be uncertain.

Customer comments

No comments were found for The role of conceptual hydrologic model calibration in climate change impact on water resources assessment. Be the first to comment!