An analytical treatment of single station triaxial seismic direction finding
Triaxial seismic direction finding can be performed by eigenanalysis of the complex coherency matrix (or cross power matrix). By splitting the symmetric Hermitian coherency matrix C to D + E (where det(E) = 0 and D is diagonal), we shift unpolarized (or inter-channel uncorrelated) data into D and then E becomes 'random noise free'. Without placing any restrictions on the signal set—P, S, Rayleigh—matrix E has only one non-zero eigenvalue (at least for the case of a single mode arriving from a single direction). But for real data (polychromatic transients with correlated noise), it will have two non-zero eigenvalues. By rotating one axis of the triaxial geophone recorded signals to lie normal to the principal eigenvector, it is possible to reduce the coherency matrix from a 3 × 3 to a 2 × 2 matrix...
Customer comments
No comments were found for An analytical treatment of single station triaxial seismic direction finding . Be the first to comment!