Explicit expressions and numerical calculations for the Fréchet and second derivatives in 2.5D Helmholtz equation inversion
In order to perform resistivity imaging, seismic waveform tomography or sensitivity analysis of geophysical data, the Fréchet derivatives, and even the second derivatives of the data with respect to the model parameters, may be required. We develop a practical method to compute the relevant derivatives for 2.5D resistivity and 2.5D frequency-domain acoustic velocity inversion. Both geophysical inversions entail the solution of a 2.5D Helmholtz equation. First, using differential calculus and the Green's functions of the 2.5D Helmholtz equation, we strictly formulate the explicit expressions for the Fréchet and second derivatives, then apply the finite-element method to approximate the Green's functions of an arbitrary medium. Finally, we calculate the derivatives using the expressions and the numerical solutions of the Green's functions. Two model parametrization approaches, constant-point and constant-block, are suggested and the computational efficiencies are compared. Numerical exam
Customer comments
No comments were found for Explicit expressions and numerical calculations for the Fréchet and second derivatives in 2.5D Helmholtz equation inversion. Be the first to comment!