ASTM F1190 - 11 standard guide for neutron irradiation of unbiased electronic components


Source: ASTM International

Semiconductor devices can be permanently damaged by reactor spectrum neutrons (1, 2) . The effect of such damage on the performance of an electronic component can be determined by measuring the component’s electrical characteristics before and after exposure to fast neutrons in the neutron fluence range of interest. The resulting data can be utilized in the design of electronic circuits that are tolerant of the degradation exhibited by that component.

This guide provides a method by which the exposure of silicon and gallium arsenide semiconductor devices to neutron irradiation may be performed in a manner that is repeatable and which will allow comparison to be made of data taken at different facilities.

For semiconductors other than silicon and gallium arsenide, applicable validated 1-MeV damage functions are not available in codified National standards. In the absence of a validated 1-MeV damage function, the non-ionizing energy loss (NIEL) or the displacement kerma, as a function incident neutron energy, normalized to the response in the 1 MeV energy region, may be used as an approximation. See Practice E722 for a description of the method used to determine the damage functions in Si and GaAs (3).

1. Scope

1.1 This guide strictly applies only to the exposure of unbiased silicon (Si) or gallium arsenide (GaAs) semiconductor components (integrated circuits, transistors, and diodes) to neutron radiation from a nuclear reactor source to determine the permanent damage in the components. Validated 1-MeV displacement damage functions codified in National Standards are not currently available for other semiconductor materials.

1.2 Elements of this guide, with the deviations noted, may also be applicable to the exposure of semiconductors comprised of other materials except that validated 1-MeV displacement damage functions codified in National standards are not currently available.

1.3 Only the conditions of exposure are addressed in this guide. The effects of radiation on the test sample should be determined using appropriate electrical test methods.

1.4 This guide addresses those issues and concerns pertaining to irradiations with reactor spectrum neutrons.

1.5 System and subsystem exposures and test methods are not included in this guide.

1.6 This guide is applicable to irradiations conducted with the reactor operating in either the pulsed or steady-state mode. The range of interest for neutron fluence in displacement damage semiconductor testing range from approximately 109 to 1016 1-MeV n/cm2.

1.7 This guide does not address neutron-induced single or multiple neutron event effects or transient annealing.

1.8 This guide provides an alternative to Test Method 1017.3, Neutron Displacement Testing, a component of MIL-STD-883 and MIL-STD-750. The Department of Defense has restricted use of these MIL-STDs to programs existing in 1995 and earlier.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)

Other Documents
DASIACSR-94-009,Apri Guide to Nuclear Weapons Effects Simulation Facilities and Techniques

The Office of the Federal Register, National Archives and Records Administration publishes several d
CodeofFederalRegulat Title 49 (Transportation), Parts 100 to 177

ASTM Standards
E170 Terminology Relating to Radiation Measurements and Dosimetry
E264 Test Method for Determining Fast-Neutron Reaction Rates by Radioactivation of Nickel
E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32
E668 Practice for Application of Thermoluminescence Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices
E720 Guide for Selection and Use of Neutron-Activation Foils for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics
E721 Method for Determining Neutron Energy Spectra with Neutron-Activation Foils for Radiation-Hardness Testing of Electronics
E722 Practice for Characterizing Neutron Energy Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics
E1249 Practice for Minimizing Dosimetry Errors in Radiation Hardness Testing of Silicon Electronic Devices Using Co-60 Sources
E1250 Test Method for Application of Ionization Chambers to Assess the Low Energy Gamma Component of Cobalt-60 Irradiators Used in Radiation-Hardness Testing of Silicon Electronic Devices
E1854 Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
F980 Guide for the Measurement of Rapid Annealing of Neutron-Induced Displacement Damage in Semiconductor Devices.
F1892 Guide for Ionizing Radiation (Total Dose) Effects Testing of Semiconductor Devices

Index Terms

dosimetry; electronic component; equivalent monoenergetic neutron fluence; fast burst reactor (FBR); gallium arsenide; gamma dose; gamma effects; irradiation; neutron fluence; neutron flux; nickel; 1 MeV equivalent fluence; radiation; reactor; semiconductor; silicon; sulfur; thermoluminescent dosimeter (TLD); TRIGA-type reactor: Destructive testing--semiconductors; Dosimetry; Electrical conductors (semiconductors); Electronic devices/instruments/equipment; Equivalent monoenergetic neutron fluence; Exposure tests--electronic components/devices; Fast burst reactors (FBR); Gallium arsenide; Gamma radiation; Germanium--semiconductor applications; Irradiance/irradiation--semiconductors; 1MeV equivalent fluence; Neutron radiation; Nickel electrical/electronic applications; Radiation exposure--electronic components/devices; Reactors; Semiconductor technology; Silicon semiconductors; Sulfur; Thermal neutron radiation; Thermoluminescent dosimeter (TLD); TRIGA-type reactors;

ICS Code

ICS Number Code 31.020 (Electronic components in general); 31.080.01 (Semi-conductor devices in general)

DOI: 10.1520/F1190-11

ASTM International is a member of CrossRef.

Customer comments

No comments were found for ASTM F1190 - 11 standard guide for neutron irradiation of unbiased electronic components. Be the first to comment!