Biodiversity Vital for Clean Streams


The first study to rigorously show how biodiversity improves water quality has been published in Nature. It offers proof that the more species a habitat holds, the faster pollutants are removed from the water. Brad Cardinale, an ecologist at the University of Michigan in Ann Arbor, is now developing his research from artificial lab-based environments to field-based streams.

Cardinale used 150 artificial streams in his lab to examine how the number of algae species in a habitat affects the speed at which the pollutant nitrate is removed from the water. He found that in habitats containing a mixture of eight species, the organisms removed nitrate up to 4.5 times faster than they did in streams with just one species.

“Field studies in nature have shown that more diverse ecosystems have lower concentrations of pollutants. This study shows that biodiversity can control a service vital to humanity, such as purifying water of a particular pollutant”, says Cardinale.

“What makes the study unique is that it thoroughly unravels the impact of biodiversity in a greatly understudied system”, says David Tilman, an ecologist at the University of Minnesota in St Paul.

Previous experiments into how biodiversity affects environments, often undertaken in grassland systems, have typically tried to isolate biodiversity-specific effects by keeping the habitats under study uniform. Cardinale, on the other hand, intentionally mimicked how streams naturally vary along their lengths, modelling the features (such as riffles, pools and floods) that he says allow diversity to matter.

There are hundreds of species of freshwater algae, but the eight that Cardinale chose to study are among the most abundant in North American streams. Some are adapted to areas in which the water flows quickly, whereas others thrive in low-flow habitats. Each species was able to establish its own niche in the model streams. “As the niches filled up, the stream became a better biofilter for pollutants”, says Cardinale.

When he removed the niche opportunities, making the stream habitats uniform, biodiversity no longer had an impact on nitrate uptake. Indeed, the biodiversity actually decreased, and a single species came to dominate each stream. Although some single species proved to be efficient at taking up nitrogen in these uniform streams, such conditions can produce other problems such as loss of erosion control, reduced replenishment of the water table and the creation of blooms of nuisance algae. “This work shows that environmental heterogeneity can’t be left out of the equation”, says Cardinale.

The biodiversity encouraged by the niches proved to matter even more than Cardinale had thought. Before starting the experiment he had expected that, as in previous studies, efficiency of resource use would be maximised by the addition of the first three or four species of algae; after that, any further species would have no effect. But he found that the pollutant uptake increased in direct proportion to the number of species added to the stream for all eight species.

Many ecologists agree that Cardinale’s experimental design and findings are impressive, but they mention a common caveat of lab studies: the results shouldn’t be presumed to exist in natural ecosystems.

Cardinale admits that the linear relationship between diversity and increased uptake of nitrate may not extrapolate to field conditions. But he says that his work does show how dynamic and varying ecological conditions allow species to coexist. And, he adds, his experiments underscore the mechanisms responsible for field observations — if species can exploit niches to divide the labour, they are more efficient as a team. “We have studies showing that more diverse ecosystems have lower concentrations of pollutants, but we didn’t have an explanation of why. To show why, we had to take a simplified system in the lab and control everything except diversity”, he says.

To that end, Cardinale has been working on field-based stream studies and is now planning projects to track the nitrate’s ultimate fate — that is, whether it continues up the food chain or re-enters the stream when the algae die.

Customer comments

No comments were found for Biodiversity Vital for Clean Streams. Be the first to comment!