ACT CleanCoat - Disruptive Technology
From Premium Purity
ACT CleanCoat is based on a disruptive technology that is specifically engineered to fight harmful microbes. European norm tests demonstrate that when ACT CleanCoat™ is applied to surfaces they become self-disinfecting and decompose microbes like bacteria, viruses, airborne mold spores, and chemical compounds like VOCs. The coating is transparent and odorless and can be applied to all surfaces, including surfaces with direct food contact. Once exposed to light, it starts a photocatalytic reaction that decomposes microbes and purifies the air.
In the presence of indoor or outdoor light, ACT Cl...
In the presence of indoor or outdoor light, ACT CleanCoat™ uses Titanium dioxide (TiO₂) to turn natural humidity and oxygen into free radicals in a natural process called photocatalysis.
When TiO₂ is exposed to light, it generates electron-hole pairs that transform the humidity in the air into free radicals. Free radicals continuously decompose bacteria, viruses, and the volatile organic compounds that they come into contact with.
Titanium Dioxide
Titanium dioxide (TiO₂) is a naturally occurring oxide and is the key ingredient in ACT CleanCoat™. It has a wide range of applications, including as a paint pigment, sunscreen ingredient, and food additive.
THE EFFECTS of ACT CleanCoat™
Decomposing microbes
To be recognized as a biocide within the European Union, a product has to pass a biocidal European norm test (EN-test) and be registered with the European Chemical Agency.
EN-tests are technical standards drafted and maintained by the European Committee for Standardization, the European Committee for Electrotechnical Standardization, and the European Telecommunications Standards Institute.
One of the institutes that has performed an EN-test on ACT CleanCoat™ is the German lab, Dr. Brill and Partner, GmbH. In their report of testing ACT CleanCoat™, they conclude:
After evaluation with poliovirus type 1, adenovirus type 5 and MNV the surface disinfectant ACT CleanCoat can be declared as having “virucidal” properties according to EN 14476:2013. Therefore, after successful experiments with the three above mentioned non-enveloped viruses the test product is also effective against the so-called blood-borne viruses including HBV, HCV and HIV as well as against members of other virus families such as orthomyxoviridae (incl. all human and animal influenza viruses like H5N1 and H1N1), coronaviridae (MERS-CoV) and filoviridae including Ebola virus.
The Danish ISI Food Protection laboratory has also tested ACT CleanCoat™ and concluded:
The results show that ACT CleanCoat™ at an 80% dilution complies with the requirements for chemical disinfectants as defined in EN 13727 against the compulsory organisms S. aureus, P. aeruginosa, and E. hirae and furthermore against MRSA, Salmonella and L. monocytogenes.
Based on the extensive investigations, it is expected that ACT CleanCoat™ will have comparable bactericidal efficacy in the quantitative suspension test against vegetative cells of other pathogenic bacteria.
TiO₂ is the most studied semiconductor photocatalyst, finding applications in various industrial and environmental applications, such as the removal of contaminants from both water and air or in sunscreens and coatings.
TiO₂ is a well-known photocatalytic antimicrobial agent, in both its bulk (coating, micropowder), and nanometric form. The antimicrobial efficacy of TiO₂ formulations depends on several parameters that include: concentration, contact time, intensity and wavelength of light, pH, temperature, availability of oxygen and target microorganism.
TiO₂ nanoparticles were reported effective towards a large variety of microorganisms, including viruses, bacteria and fungi, with an efficiency influenced by the thickness of the microorganism’s surface structure, in the order of virus>bacterial wall>bacterial spore.
Within bacteria, the efficiency of nano-TiO₂ was found to be in the order of Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus > Enterococcus faecium > Candida albicans, reflecting again the dependence of the antimicrobial action to the complexity and density of the cell membrane.
Cleaning the air
ACT CleanCoat™ reduces air pollutants, including volatile organic compounds (VOCs) such as formaldehyde, benzene, and acetone as well as NOx. VOCs can cause a drowsiness experience in a room with poor ventilation or with new furniture, new carpets, or many electronics.
ACT CleanCoat™ also reduces odors (which are also carbon-based molecules) in the air, providing our clients with better indoor air quality.
Controlling mold
In nature, mold is necessary to help dead organic material decompose. However, mold poses a significant challenge in buildings. Besides the unpleasant odor and possibly costly renovation of the building, there are serious health risks involved in living and working in a mold-infested environment.
Mold spores are basically everywhere, but with ACT CleanCoat™ they are decomposed before they even settle on a coated surface, inhibiting spore germination, or mycelium growth.
ACT CleanCoat™ has passed several EN-tests for mold and yeasts:
• EN 13624, Aspergillus brasiliensis
• EN 14562, Aspergillus brasiliensis
• EN 13624, Candida albicans (candida yeast)
• EN 14562, Candida albicans (candida yeast)
Customer reviews
No reviews were found for ACT CleanCoat - Disruptive Technology. Be the first to review!