- Home
- Companies
- ITASCA Software
- Software
ITASCA Software software
Geotechnical Software
3DEC - Three-Dimensional Numerical Geotechnical Software
3DEC is a three-dimensional numerical modeling code for advanced geotechnical analysis of soil, rock, ground water, structural support, and masonry. 3DEC simulates the response of discontinuous media (such as jointed rock or masonry bricks) that is subject to either static or dynamic loading. The numerical formulation It is based on the distinct element method (DEM) for discontinuum modeling. UDEC is the two-dimensional version.
FLAC2D - Advanced Geotechnical Analysis Numerical Modeling Software
FLAC2D, Fast Lagrangian Analysis of Continua, is numerical modeling software for advanced geotechnical analysis of soil, rock, groundwater, and ground support in two dimensions. FLAC is used for analysis, testing, and design by geotechnical, civil, and mining engineers. It is designed to accommodate any kind of geotechnical engineering project that requires continuum analysis. FLAC utilizes an explicit finite difference formulation that can model complex behaviors, such as problems that consist of several stages, large displacements and strains, non-linear material behavior, or unstable systems (even cases of yield/failure over large areas, or total collapse).FLAC/Slope - Graphical Interface Software
FLAC/Slope is a special, streamlined version of FLAC for evaluating the factor of safety (FoS) of soil and rock slopes in two dimensions with simple and fast model setup and analysis execution. FLAC/Slope can simulate stability problems under a wide variety of slope conditions, including: arbitrary slope geometries, multiple layers, pore pressure conditions, heterogeneous soil properties, surface loading, and structural reinforcement.
FLAC3D - Geotechnical Analyses Numerical Modeling Software
FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) is numerical modeling software for geotechnical analyses of soil, rock, groundwater, constructs, and ground support. Such analyses include engineering design, factor of safety prediction, research and testing, and back-analysis of failure.
KATS - Kinematic Slope Analysis Software Tools
KATS (Kinematic Analysis Tools for Slopes) is a tool developed by Itasca that assesses instabilities caused by day-lighting wedges and planar failures formed when different structural sets interact with the orientation of a given slope. KATS main application is for bench-berm scale analysis, which is understood as a first step in the mining slope design process for moderate and competent rock masses. It is also possible to perform a kinematic analysis in inter-ramp scale.
PFC - General Purpose, Distinct-Element Modeling (DEM) Framework Software
PFC (Particle Flow Code) is a general purpose, distinct-element modeling (DEM) framework that is available as two- and three-dimensional programs (PFC2D and PFC3D, respectively). PFC Suite includes both PFC2D and PFC3D. PFC2D can also be purchased separately.
UDEC - Universal Distinct Element Code Software
The Universal Distinct Element Code (UDEC) is a two-dimensional numerical program that simulates the quasi-static or dynamic response to loading of media containing multiple intersecting joint structures. The discontinuous medium is represented as an assemblage of discrete blocks while the discontinuities are treated as boundary conditions between blocks. Large displacements along discontinuities and rotations of blocks can occur. UDEC utilizes an explicit solution scheme that can model complex, nonlinear behaviors.
XSite - Three-Dimensional Hydraulic Fracturing Numerical Simulation Program Software
XSite is a powerful three-dimensional hydraulic fracturing numerical simulation program based on the Synthetic Rock Mass (SRM) and Lattice methods. XSite is capable of modeling multiple wellbores with multiple stages and clusters, including open-hole completions and perforation tunnels. XSite resolves general hydraulic fracture interaction, including propagation in naturally fractured reservoirs with deterministically or stochastically generated discrete fracture networks (DFNs). The models conduct fully coupled hydro-mechanical simulations. Fluid flow is simulated as fracture flow within the joint networks and as matrix flow within the intact rock.
